Some things in life are certain - for instance, we tend to take for granted that the sun will rise every day. Similarly, everyone knows that each Christmas, Canadian-Italian singer-songwriter Michael Bublé will emerge from his secret hideaway and top Christmas playlists yet again.
9 min read
·
By Bendik Witzøe
·
December 12, 2019
However, other things are not so certain. Today, we will take a look at how uncertainty may play a role in how we interpret machine learning models.
###Black Box versus White Box Models
As modern machine learning models become able to solve increasingly challenging problems, their application has grown tremendously. In the US, deep learning patent applications grew on average by 175% annually between 2013 and 2016. This has caused an ever-expanding range of complex models.
One challenge with the complexity of modern deep learning models is the non-trivial task of understanding precisely why a model produces the outputs it does. Deep learning models may have millions of model parameters and determining the values is not an exact science. Once trained, understanding the complex relationship between inputs and outputs can be extremely difficult. In other words, many modern models exhibit traits of a black box. In black box models the relationship between inputs and outputs is not easily interpretable – it’s as if we are dealing with a black box which magically gives us answers given our inputs.
Conversely, in white box models we can clearly understand and explain the relationship between inputs and outputs, and thus also model behaviour.
So why can black box traits be problematic? There are several reasons:
The debate of which is superior between white and black box models is not something we will dive into in this blog post – but we will look at how we can utilize uncertainty to assist in both interpretability and to some extent explainability.
###About uncertainty
Uncertainty in the setting of modelling a problem comes in two forms:
Thus, for every prediction a model makes we deal with both aleatoric and epistemic uncertainty, in sum comprising what is often referred to as prediction uncertainty. As a side note, if we consider humans to be deep learning models in action, we also deal with the same uncertainties. Below is the picture of “The Dress”, a picture which went viral because people couldn’t agree on what colours they see (spoiler: it really is black and blue). We’ll leave it to the reader to determine if this is aleatoric or epistemic uncertainty – or both!
###Uncertainty in a Machine Learning Problem
Let’s look at the two types of uncertainty in the context of a simple regression problem. Here we have some data points in two dimensions, and we wish to model the output y as a function of x. We have fitted a deep learning model to the data (a simple model would have sufficed for this problem, but the discussion scales to higher dimensions and more complex problems).
Our model seems to fit the data reasonably well, but there are two areas of particular interest.
In area A, it seems we have several values of y for similar x. Perhaps our data stems from an inconsistent sensor, or we are even missing a third-dimension, z, which could explain this behaviour. However, if we assume that we cannot repair our sensor or measure more dimensions – we are dealing with high aleatoric uncertainty in this area. Ideally, we would want the model to tell us that on average its prediction will be fairly accurate, but real values of y may deviate more in area A than in its immediate neighbouring spaces.
In area B, we lack data altogether. Yet, if we ask our model what it predicts for y in this area, it will give an answer. Now you might object that in the same way you wouldn’t ask your dentist for advice on stock trading, you shouldn’t ask this model what y is for unseen x. However, in real applications we may not always be able to guarantee this doesn’t happen – consider for instance an autonomous car image recognition system seeing an object for the first time. In area B, we are very uncertain that we have the right model and the epistemic uncertainty is high. However, given some more data in this area, we could reduce it. Here, we would want the model to say (like the dentist would): “I’ll give you an answer if you force me to, but honestly I have no idea”.
Clearly, while uncertainty will not improve the performance of our model by itself, it will help with explaining and predicting the behaviour of the model. In areas with high prediction uncertainty, we expect our model to be wrong more often – traits which by themselves are not explained by traditional performance metrics. Effectively communicating this can improve trust in a system even though performance remains constant.
Now that we have identified these uncertain areas, let’s briefly look at how we can estimate the uncertainty and communicate it using deep learning models.
###Estimating Uncertainty
Data scientists with a penchant for the Bayesian school will argue that you should always model uncertainty because it is always present in any problem. However, we can often afford to overlook it if the application is not critical. In cases that you do need to consider uncertainty, several approaches exist. A thorough review is beyond the scope of this blog post, but we will give some pointers for those who are interested.
For epistemic uncertainty, we will highlight two approaches:
For the aleatoric uncertainty:
Also, worth mentioning is the study of using machine learning to produce prediction intervals for regression problems which is concerned with outputting intervals with a given confidence level that the real value will be contained within the interval. Some approaches do not require assumptions on the underlying distributions of the data.
###Does This Mean a Free Lunch?
Finally, we should point out that in data science, there is no free lunch. This also applies to estimating uncertainty in deep learning models, which comes at a cost:
We encourage you to remember that uncertainty is always present in deep learning models, so determining when you need to take it into consideration is a valuable skill as a data scientist.
Loading…
Loading…
Loading…
Loading…